

OH 2

OH 2

	Spontaneous Fission and Alpha Decay Rates of Uranium			
	t _{1/2} (α) (years)	t _{1/2} (s.f.) (years)	α decay rate (atoms /s/kg)	s.f. decay rate (atoms /s/kg)
U-235	7.1 x 10 ⁸	1.2 x 10 ¹⁷	79 x 10 ⁶	0.3
U-238	4.5 x 10 ⁹	5.5 x 10 ¹⁵	12 x 10 ⁶	6.9

•

.

À

OH 2.1

Fission

Spontaneous Fission

• Rare but possible

Induced Fission

- Excited energy level must be above critical
- Adding a neutron adds energy to the nucleus (kinetic & binding energy)

Fissile Nuclei

)

Fission with zero energy neutrons

Fissionable Nuclei

• Fission with energetic (fast) neutrons only

Fission Process Summary

٢

* Critical energy of compound nucleus must be less than binding energy of added neutron

Low energy neutrons interact more readily with U-235 to cause fission than do high energy neutrons. U-238, on the other hand, will only undergo fission with high-energy neutrons.

* Neutron/proton ratio curve results in additional neutrons being produced in fission $(\upsilon > 1)$

★ Neutrons produced in fission have range of energies. $\overline{E} \approx 2 MeV$.

* Neutrons must be slowed down to lower energies (thermalised or moderated) to start new cycle.

Avogadro's Number

 $N_A = 6.022 \times 10^{23}$

3

(just)

Number of atoms or nuclei in a given sample

$$N = \frac{N_A}{A} \times MASS (g)$$

Example: Atoms in 1kg of U-235

$$V = \frac{6.022 \times 10^{23}}{235} \times 1000$$
$$= 25.62 \times 10^{23} \text{ atoms}$$

Example: 1kg of U-235 consumed in one day

$$N = \frac{6.022 \times 10^{23}}{235} \times 1000 \text{ fission/day}$$

= 25.62 x 10²³ atoms / (24 x 3600) Fissions/s
= 0.0002965 x 10²³ x 200 MeV/s
= 0.05932 x 10²³ x 1.6022 x 10⁻¹³ J/s
= 0.09504 x 10¹⁰ W
= 950 x 10⁶ W
= 950 MW

Radiative capture Cross-section of U-238

Ċ

Elastic scattering Cross-section of U-238

Cross-Section Nomenclature

 σ_{f} = Fission cross section

٩

 σ_a _ Absorption cross section

 $\sigma_{n, \gamma}$ = Radiative capture cross section

 σ_i = Inelastic scattering cross section

 σ_s = Elastic scattering cross section

Definitions

Macroscopic cross-section

(Cross-section density in material)

 $\Sigma = N\sigma$

N = Nuclei per unit volume

 σ = Microscopic cross-section

Neutron flux

à:

30) Sic

(Neutrons passing through given area per second)

 $\phi = nv$

n = Neutrons per unit volume

v = Neutron velocity

Reaction rate

(Reaction rate of neutrons with material)

 $R = \phi \Sigma$

 ϕ = Neutron flux

 Σ = Macroscopic cross-section

 $\left(\frac{1}{cm}\right)$ or $\left(cm^{-1}\right)$

 $\left(\frac{\text{nuclei}}{\text{cm}^3}\right)$

 (cm^2)

 $\left(\frac{1}{cm}\right)$

 $\left(\frac{\text{neutrons}}{\text{cm}^2 \text{ s}}\right)$

 $\left(\frac{\text{neutrons}}{\text{cm}^3}\right)$

. . . .

011 0 40

